Influence of Y Nano-Oxide and Its Secondary Phase on Microstructure, Mechanical Properties, and Wear Behavior of the Stainless Steel Coatings Fabricated by Plasma Transfer Arc

نویسندگان

چکیده

Rare-earth is an efficient refiner for surface modification of steel material. This study presents the synergistic influence Y2O3 nanoparticles (YNPs) and Mn-oxide secondary phase on microstructure mechanical properties 14CrSiMnV coating fabricated by plasma transfer arc cladding process. The results indicated that residual Y accumulated with Mn, forming a oxide particle instead inclusions or slags during rapid cooling solidification coating. Due to enlarged equiaxed grains, declining long-range dendritic strengthening, coatings present hybrid-type fracture mechanism, less plastic deformation, third-body interaction. With optimal addition YNPs (0.4 wt.%), are improved, as increase 92.0% in tensile strength, 55.6% elongation, 11.3% microhardness, decrease 22.2% wear weight loss, 28.3% relative resistance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Influence of Homogenization and Solution Annealing Process on the Microstructure and Mechanical Properties of 1.4470 Ferritic-austenitic Stainless Steel

In the present research, the effect of the homogenization process and annealing temperature were investigated for the 1.4470 ferritic-austenitic stainless steel in the as-cast condition. In this regard, microstructural evolutions, hardness, and impact energy of the steel was evaluated with different heat treatment conditions. The results show that the minimum volume fraction of austenite phase ...

متن کامل

Evaluation of Microstructure and Wear Behavior of Iron-based Hard - facing Coatings on the Mo40 Steel

Mo40 low-alloy steels are mostly used to produce industrial components such as crane wheels which are exposed to abrasive wear. However, during working conditions, their wear resistance is reduced after a while due to its low hardness. With increasing abrasive wear, the dimensions of components decrease and they need to be repaired for surface modification. In this regard, hard overlay coatings...

متن کامل

Effect of Carbide Particle Size on the Microstructure, Mechanical properties, and Wear Behavior of HVOF-sprayed WC-17% Co Coatings

This study investigates the effect of carbide particle size on the microstructure, mechanical properties, and abrasive wear resistance of WC-17%Co HVOF-sprayed coatings. The characteristics of WC-1, WC-2, and WC-3 coatings with carbide sizes of 1 µm, 0.9 µm, and 0.5 µm, respectively, were also investigated. WC-1 coating experienced the maximum carbon loss of 42%, while WC-2 and WC-3 coatings un...

متن کامل

Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of a Duplex Stainless Steel

Duplex stainless steels (DSSS) have a microstructure composed of ferrite and austenite phases that gives them a very good combination of mechanical and corrosion properties. These steels are desirable for many applications in the chemical and petrochemical industries. In the present study, a type of stainless steel was cast, solution annealed at 1200°C for 60 min and then quenched in water. Ini...

متن کامل

Influence of Cu and Ni on the Microstructure and Mechanical Properties of an HSLA Steel

In this research the role of alloying elements on the microstructure and mechanical properties of an as cast and hot rolled high strength low alloy (HSLA) steel was studied. Different compositions with different amount of copper in the presence of nickel, hot rolled and quenched in oil. Tensile test, hardness test, scanning electron microscope (SEM) and optical microscope (OM) were used to eval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metals

سال: 2022

ISSN: ['2075-4701']

DOI: https://doi.org/10.3390/met12060942